NumPy 相关

一、MumPy:数组计算

1、NumPy 是高性能科学计算和数据分析的基础包。它是 pandas 等其他各种工具的基础。

2、NumPy 的主要功能:

  • ndarray,一个多维数组结构,高效且节省空间
  • 无需循环对整组数据进行快速运算的数学函数
  • 读写磁盘数据的工具以及用于操作内存映射文件的工具
  • 线性代数、随机数生成和傅里叶变换功能
  • 用于集成 C、C++ 等代码的工具

3、安装方法:

pip install numpy

二、NumPy:ndarray- 多维数组对象

1、创建 ndarray:np.array()

2、ndarray 是多维数组结构,与列表的区别是:

数组对象内的元素类型必须相同
数组大小不可修改

3、常用属性:

T 数组的转置(对高维数组而言)
NumPy 相关

  • dtype 数组元素的数据类型
  • size 数组元素的个数
  • ndim 数组的维数
  • shape 数组的维度大小(以元组形式)

4、常用方法

array.shape                         array的规格
array.ndim      
array.dtype                         array的数据规格
numpy.zeros(dim1,dim2)              创建dim1*dim2的零矩阵
numpy.arange
numpy.eye(n) /numpy.identity(n)     创建n*n单位矩阵
numpy.array([…data…], dtype=float64 )
array.astype(numpy.float64)         更换矩阵的数据形式
array.astype(float)                 更换矩阵的数据形式
array * array                       矩阵点乘
array[a:b]                          切片
array.copy()                        得到ndarray的副本,而不是视图
array [a](https://support.i-search.com.cn/tag/a) [b]=array [ a, b ]        两者等价
name=np.array(['bob','joe','will']) res=name==’bob’ res= array([ True, False, False], dtype=bool)
data[True,False,…..]                索引,只索取为True的部分,去掉False部分
通过布尔型索引选取数组中的数据,将总是创建数据的副本。
data[ [4,3,0,6] ]                   索引,将第4,3,0,6行摘取出来,组成新数组
data[-1]=data[data.__len__()-1]
numpy.reshape(a,b)                  将a*b的一维数组排列为a*b的形式
array([a,b,c,d],[d,e,f,g])          返回一维数组,分别为[a,d],[b,e],[c,f],[d,g]
array[ [a,b,c,d] ][:,[e,f,g,h] ]=array[ numpy.ix_( [a,b,c,d],[e,f,g,h] ) ]
array.T                             array的转置
numpy.random.randn(a,b)             生成a*b的随机数组
numpy.dot(matrix_1,matrix_2)        矩阵乘法
array.transpose( (1,0,2,etc.) )     对于高维数组,转置需要一个由轴编号组成的元组

三、NumPy:ndarray- 数据类型

  • ndarray 数据类型:dtype:
  • 布尔型:bool_
  • 整型:int_ int8 int16 int32 int64
  • 无符号整型:uint8 uint16 uint32 uint64
  • 浮点型:float_ float16 float32 float64
  • 复数型:complex_ complex64 complex128

四、NumPy:ndarray- 创建

创建ndarray:
    array()         将列表转换为数组,可选择显式指定dtype
    arange()        range的numpy版,支持浮点数
    linspace()      类似arange(),第三个参数为数组长度
    zeros()         根据指定形状和dtype创建全0数组
    ones()          根据指定形状和dtype创建全1数组
    empty()         根据指定形状和dtype创建空数组(随机值)
    eye()           根据指定边长和dtype创建单位矩阵

五、NumPy:索引和切片

1、数组和标量之间的运算
    a+1    a*3    1//a    a**0.5
2、同样大小数组之间的运算
    a+b    a/b    a**b
3、数组的索引:
    一维数组:a[5]
    多维数组:
        列表式写法:a[2][3]
        新式写法:a[2,3] (推荐)
   数组的切片:
        一维数组:a[5:8]    a[4:]        a[2:10] = 1
        多维数组:a[1:2, 3:4]    a[:,3:5]        a[:,1]
4、强调:与列表不同,数组切片时并不会自动复制,在切片数组上的修改会影响原数组。    【解决方法:copy()】

六、NumPy:布尔型索引

问题 1:给一个数组,选出数组中所有大于 5 的数。
  答案:a[a>5]
  原理:
    a>5 会对 a 中的每一个元素进行判断,返回一个布尔数组
    布尔型索引:将同样大小的布尔数组传进索引,会返回一个由所有 True 对应位置的元素的数组

问题 2:给一个数组,选出数组中所有大于 5 的偶数。
问题 3:给一个数组,选出数组中所有大于 5 的数和偶数。
  答案:
     a[(a>5) & (a%2==0)]
     a[(a>5) | (a%2==0)]

import numpy as np
a = np.array([1,2,3,4,5,4,7,8,9,10])
a[a>5&(a%2==0)]  #注意加括号,不加括号错误,如下
输出>>:array([ 1,  2,  3,  4,  5,  4,  7,  8,  9, 10])
a[(a>5)&(a%2==0)]
输出>>:array([ 8, 10])

七、NumPy:花式索引

问题 1:对于一个数组,选出其第 1,3,4,6,7 个元素,组成新的二维数组。
答案:a1,3,4,6,7

问题 2:对一个二维数组,选出其第一列和第三列,组成新的二维数组。
答案:a[:,[1,3]]

八、NumPy:通用函数

通用函数:能同时对数组中所有元素进行运算的函数

常见通用函数:

一元函数:abs, sqrt, exp, log, ceil, floor, rint, trunc, modf, isnan, isinf, cos, sin, tan

numpy.sqrt(array)                   平方根函数   
numpy.exp(array)                    e^array[i]的数组
numpy.abs/fabs(array)               计算绝对值
numpy.square(array)                 计算各元素的平方 等于array**2
numpy.log/log10/log2(array)         计算各元素的各种对数
numpy.sign(array)                   计算各元素正负号
numpy.isnan(array)                  计算各元素是否为NaN
numpy.isinf(array)                  计算各元素是否为NaN
numpy.cos/cosh/sin/sinh/tan/tanh(array) 三角函数
numpy.modf(array)                   将array中值得整数和小数分离,作两个数组返回
numpy.ceil(array)                   向上取整,也就是取比这个数大的整数 
numpy.floor(array)                  向下取整,也就是取比这个数小的整数
numpy.rint(array)                   四舍五入
numpy.trunc(array)                  向0取整 
numpy.cos(array)                       正弦值
numpy.sin(array)                    余弦值 
numpy.tan(array)                    正切值 

二元函数:add, substract, multiply, divide, power, mod, maximum, mininum,

numpy.add(array1,array2)            元素级加法
numpy.subtract(array1,array2)       元素级减法
numpy.multiply(array1,array2)       元素级乘法
numpy.divide(array1,array2)         元素级除法 array1./array2
numpy.power(array1,array2)          元素级指数 array1.^array2
numpy.maximum/minimum(array1,aray2) 元素级最大值
numpy.fmax/fmin(array1,array2)      元素级最大值,忽略NaN
numpy.mod(array1,array2)            元素级求模
numpy.copysign(array1,array2)       将第二个数组中值得符号复制给第一个数组中值
numpy.greater/greater_equal/less/less_equal/equal/not_equal (array1,array2)
元素级比较运算,产生布尔数组
numpy.logical_end/logical_or/logic_xor(array1,array2)元素级的真值逻辑运算