使用类型注解让 Python 代码更易读
我们知道 Python 是一种动态语言,在声明一个变量时我们不需要显式地声明它的类型,例如下面的例子:
a = 2
print('1 + a =', 1 + a)
运行结果:
1 + a = 3
这里我们首先声明了一个变量 a
,并将其赋值为了 2,然后将最后的结果打印出来,程序输出来了正确的结果。但在这个过程中,我们没有声明它到底是什么类型。
但如果这时候我们将 a
变成一个字符串类型,结果会是怎样的呢?改写如下:
a = '2'
print('1 + a =', 1 + a)
运行结果:
TypeError: unsupported operand type(s) for +: 'int' and 'str'
直接报错了,错误原因是我们进行了字符串类型的变量和数值类型变量的加和,两种数据类型不同,是无法进行相加的。
如果我们将上面的语句改写成一个方法定义:
def add(a):
return a + 1
这里定义了一个方法,传入一个参数,然后将其加 1 并返回。
如果这时候如果用下面的方式调用,传入的参数是一个数值类型:
add(2)
则可以正常输出结果 3。但如果我们传入的参数并不是我们期望的类型,比如传入一个字符类型,那么就会同样报刚才类似的错误。
但又由于 Python 的特性,很多情况下我们并不用去声明它的类型,因此从方法定义上面来看,我们实际上是不知道一个方法的参数到底应该传入什么类型的。
这样其实就造成了很多不方便的地方,在某些情况下一些复杂的方法,如果不借助于一些额外的说明,我们是不知道参数到底是什么类型的。
因此,Python 中的类型注解就显得比较重要了。
类型注解
在 Python 3.5 中,Python PEP 484 引入了类型注解(type hints),在 Python 3.6 中,PEP 526 又进一步引入了变量注解(Variable Annotations),所以上面的代码我们改写成如下写法:
a: int = 2
print('5 + a =', 5 + a)
def add(a: int) -> int:
return a + 1
具体的语法是可以归纳为两点:
-
在声明变量时,变量的后面可以加一个冒号,后面再写上变量的类型,如 int、list 等等。
-
在声明方法返回值的时候,可以在方法的后面加一个箭头,后面加上返回值的类型,如 int、list 等等。
在 PEP 8 中,具体的格式是这样规定的: -
在声明变量类型时,变量后方紧跟一个冒号,冒号后面跟一个空格,再跟上变量的类型。
-
在声明方法返回值的时候,箭头左边是方法定义,箭头右边是返回值的类型,箭头左右两边都要留有空格。
有了这样的声明,以后我们如果看到这个方法的定义,我们就知道传入的参数类型了,如调用 add 方法的时候,我们就知道传入的需要是一个数值类型的变量,而不是字符串类型,非常直观。
但值得注意的是,这种类型和变量注解实际上只是一种类型提示,对运行实际上是没有影响的,比如调用 add 方法的时候,我们传入的不是 int 类型,而是一个 float 类型,它也不会报错,也不会对参数进行类型转换,如:
add(1.5)
我们传入的是一个 float 类型的数值 1.5,看下运行结果:
2.5
可以看到,运行结果正常输出,而且 1.5 并没有经过强制类型转换变成 1,否则结果会变成 2。
因此,类型和变量注解只是提供了一种提示,对于运行实际上没有任何影响。
不过有了类型注解,一些 IDE 是可以识别出来并提示的,比如 PyCharm 就可以识别出来在调用某个方法的时候参数类型不一致,会提示 WARNING。
比如上面的调用,如果在 PyCharm 中,就会有如下提示内容:
Expected type 'int', got 'float' instead
This inspection detects type errors in function call expressions. Due to dynamic dispatch and duck typing, this is possible in a limited but useful number of cases. Types of function parameters can be specified in docstrings or in Python 3 function annotations.
另外也有一些库是支持类型检查的,比如 mypy,安装之后,利用 mypy 即可检查出 Python 脚本中不符合类型注解的调用情况。
上面只是用一个简单的 int 类型做了实例,下面我们再看下一些相对复杂的数据结构,例如列表、元组、字典等类型怎么样来声明。
可想而知了,列表用 list 表示,元组用 tuple 表示,字典用 dict 来表示,那么很自然地,在声明的时候我们就很自然地写成这样了:
names: list = ['Germey', 'Guido']
version: tuple = (3, 7, 4)
operations: dict = {'show': False, 'sort': True}
这么看上去没有问题,确实声明为了对应的类型,但实际上并不能反映整个列表、元组的结构,比如我们只通过类型注解是不知道 names 里面的元素是什么类型的,只知道 names 是一个列表 list 类型,实际上里面都是字符串 str 类型。我们也不知道 version 这个元组的每一个元素是什么类型的,实际上是 int 类型。但这些信息我们都无从得知。因此说,仅仅凭借 list、tuple 这样的声明是非常“弱”的,我们需要一种更强的类型声明。
这时候我们就需要借助于 typing 模块了,它提供了非常“强“的类型支持,比如List[str]
、Tuple[int, int, int]
则可以表示由 str 类型的元素组成的列表和由 int 类型的元素组成的长度为 3 的元组。所以上文的声明写法可以改写成下面的样子:
from typing import List, Tuple, Dict
names: List[str] = ['Germey', 'Guido']
version: Tuple[int, int, int] = (3, 7, 4)
operations: Dict[str, bool] = {'show': False, 'sort': True}
这样一来,变量的类型便可以非常直观地体现出来了。
目前 typing 模块也已经被加入到 Python 标准库中,不需要安装第三方模块,我们就可以直接使用了。
typing
下面我们再来详细看下 typing 模块的具体用法,这里主要会介绍一些常用的注解类型,如 List、Tuple、Dict、Sequence 等等,了解了每个类型的具体使用方法,我们可以得心应手的对任何变量进行声明了。
在引入的时候就直接通过 typing 模块引入就好了,例如:
from typing import List, Tuple
List
List、列表,是 list 的泛型,基本等同于 list,其后紧跟一个方括号,里面代表了构成这个列表的元素类型,如由数字构成的列表可以声明为:
var: List[int or float] = [2, 3.5]
另外还可以嵌套声明都是可以的:
var: List[List[int]] = [[1, 2], [2, 3]]
Tuple、NamedTuple
Tuple、元组,是 tuple 的泛型,其后紧跟一个方括号,方括号中按照顺序声明了构成本元组的元素类型,如 Tuple[X, Y]
代表了构成元组的第一个元素是 X 类型,第二个元素是 Y 类型。
比如想声明一个元组,分别代表姓名、年龄、身高,三个数据类型分别为 str、int、float,那么可以这么声明:
person: Tuple[str, int, float] = ('Mike', 22, 1.75)
同样地也可以使用类型嵌套。
NamedTuple,是 collections.namedtuple 的泛型,实际上就和 namedtuple 用法完全一致,但个人其实并不推荐使用 NamedTuple,推荐使用 attrs 这个库来声明一些具有表征意义的类。
Dict、Mapping、MutableMapping
Dict、字典,是 dict 的泛型;Mapping,映射,是 collections.abc.Mapping 的泛型。根据官方文档,Dict 推荐用于注解返回类型,Mapping 推荐用于注解参数。它们的使用方法都是一样的,其后跟一个中括号,中括号内分别声明键名、键值的类型,如:
def size(rect: Mapping[str, int]) -> Dict[str, int]:
return {'width': rect['width'] + 100, 'height': rect['width'] + 100}
这里将 Dict 用作了返回值类型注解,将 Mapping 用作了参数类型注解。
MutableMapping 则是 Mapping 对象的子类,在很多库中也经常用 MutableMapping 来代替 Mapping。
Set、AbstractSet
Set、集合,是 set 的泛型;AbstractSet、是 collections.abc.Set 的泛型。根据官方文档,Set 推荐用于注解返回类型,AbstractSet 用于注解参数。它们的使用方法都是一样的,其后跟一个中括号,里面声明集合中元素的类型,如:
def describe(s: AbstractSet[int]) -> Set[int]:
return set(s)
这里将 Set 用作了返回值类型注解,将 AbstractSet 用作了参数类型注解。
整体看下来,每个参数的类型、返回值都进行了清晰地注解,代码可读性大大提高。
以上便是类型注解和 typing 模块的详细介绍。